
Convective instability of magnetic fluids

P. N. Kaloni and J. X. Lou
Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 8 March 2004; revised manuscript received 7 June 2004; published 31 August 2004)

A theoretical investigation of the convective instability problem in the thin horizontal layer of a magnetic
fluid heated from below is carried out. The effects of the relaxation timet and the vortex(rotational) viscosity
j are considered and discussed. The Chebyshev pseudospectral method is employed to solve the eigenvalue
problems and numerical calculations are carried out for a number of magnetic fluids and in full range of the
magnetic field. A variety of results under gravity-free conditions are also presented and the critical temperature
gradient are determined for a variety of situations. It is shown that the consideration ofsj ,td, in the stability
analysis, is most effective in the thin layer of the fluid and at low values of Langevin parameteraL.
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I. INTRODUCTION

Magnetic fluids or ferrofluids are colloidal suspensions of
fine magnetic mono domain nanoparticles in nonconducting
liquids like hydrocarbon, ester, water, etc. These fluids are
not found in nature but are artificially synthesized. The con-
tinuum description of the magnetic fluids, termed as ferrohy-
drodynamics, has been in existence since the work of Neu-
ringer and Rosensweig[1]. This so-called quasistationary
theory has been helpful to explain many physical phenomena
and has a wide range of applications[2,3]. The theory has,
however, limitations because it assumes that magnetization is
always collinear to the applied field at every instant, that is,
magnetization relaxation time is zero. Recent researchers
have shown that when magnetic fluids move in the presence
of an applied field, or are subjected to unsteady magnetic
fields, the phenomena observed can only be explained by a
finite magnetization relaxation time[2,4–7]. There are, in
general, two mechanisms of magnetization relaxation. The
first one is Néel mechanism in which the particle magnetic
momentm rotates inside the particle and the particle does
not rotate itself. In Brownian relaxation mechanism the vec-
tor m is locked into the crystal axis of the particle and rotates
along with the particle rotation. Thus when the applied field
has a changing direction or magnitude, in the Néel mecha-
nism, the relaxation of the magnetization does not initiate the
rotation of the particle and accordingly no momentum trans-
fer, from the particle to the fluid, occurs. In Brownian
mechanism the magnetization relaxation, however, causes
the rotation of the particle itself and there is thus momentum
transfer to the carrier fluid in the form of a viscous friction. It
is believed that quasistationary theory[1] is reasonably valid
for colloidal suspensions of Néel particles. For Brownian
particle, with finite magnetic relaxation time, one, however,
needs to incorporate the intrinsic rotation of the particle in
the theory[2,4,5].

There have been a number of convective instability stud-
ies using the quasistationary theory[1]. Finlayson[8] studied
the convective instability of a magnetic fluid for a fluid layer
heated from below in the presence of a uniform vertical mag-
netic field. He discussed both shear free and rigid horizontal
boundaries using the linear stability method. Gotoh and Ya-
mada[9] carried out the same study by assuming the fluid to

be confined between two magnetic pole pieces. Lalas and
Carmi [10] analyzed the problem, studied in Ref.[8], by
energy stability method. Convective instability analysis for a
rotating layer of a magnetic fluid between two free bound-
aries and between rigid or ferromagnetic boundaries have
been studied by Gupta and Gupta[11], and Venkatasubrama-
nian and Kaloni[12], respectively. Qin and Kaloni[13] have
analyzed the buoyancy-surface tension effects, using linear
and nonlinear theory, in a magnetic fluid heated from below.
Recently Shivakumaraet al. [14] have considered the non-
uniform basic temperature gradient on Rayleigh-Benard-
Marangoni convection. Some other aspects of the theromo-
convection problems, in magnetic fluids, have also been
studied by Recktenwald and Lücke[15], Blennerhassettet
al. [16], and Straughan[17].

In two recent papers Shliomis[18] and Shliomis and
Smorodin [19] have studied the convective instability of
magnetized ferrofluids by treating the fluids as binary mix-
tures. These authors consider the influence of concentration
gradients due to magnetophoresis and Soret effects. As
Shliomis[18] points out this situation is possible only when
the temperature difference is allowed to increase very slowly
so that the mass diffusion develops and remains undisturbed
before the convection starts due to temperature difference.
Unlike the results of previous authors[9–16], who found
only stationary instability to occur in all cases, Shliomis and
Smorodin[19] predict oscillatory instability in a certain re-
gion of magnetic field and the fluid temperature. Equations
used in Refs.[18,19] are again those of quasistationary
theory [1].

Stiles and Kagan[20] discuss the thermoconvective insta-
bility of a ferrofluid in a strong external magnetic field.
These authors consider the equations involving rotational or
vortex viscosity and the nonequilibrium magnetization equa-
tion, involving Brownian relaxation timet. Unfortunately,
because of the strong external field assumption, which soon
leads to magnetic saturation, and in the manner equations are
linearized and approximated, their equations determining the
stability criteria turn out to be identical to those of Finlayson
[8] [compare Eqs.(4.11) – (4.15) of Ref. [20] with Eq. (17)
(18a,b,c) of Ref. [8]]. In particular, these authors assumet
tending to zero and also the average spin of the particle equal
to the fluid vorticity. Stiles and Kagan[20], however, con-
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sider the effect of the dependence of shear viscosity on col-
loidal concentration and on temperature gradient, not studied
in Ref. [8]. We remark that, in a proper dilute theory of a
magnetic fluid accounting for internal rotation of the par-
ticles, the influence of the relaxation timet and the vortex
(rotational) viscosity j, in the absence of colloidal particle
inertia which is usually very small, are tied together. Thus
the absence of one variable in a physical situation implies,
automatically, the absence of the other variable and vice
versa.

In the present paper we consider the convective instability
problem in the horizontal layer of a magnetic fluid with
Brownian relaxation mechanism. We employ appropriate
equations which allow proper consideration of internal rota-
tion and vortex viscosity[2,4,5], and present a reasonably
complete study of the problem. In order to gain some feeling

about the values of various basic parameters involved, we
have sketched them in Figs. 1 and 2. We use Chebyshev
pseudospectral method to solve the eigenvalue problems. It
turns out that, apart from the Rayleigh numberRg and mag-
netic Rayleigh numberN, several other parameters involving
t and j dictate the stability pattern. We consider the ferro-
fluid layers varying from 1 mm to 8 mm and carry out cal-
culations for three carrier fluids, hydrocarbon, ester and wa-
ter. Our results, thus, not only predict the effect oft and j
consideration on the stability, but we also report the magnetic
field effect in its entire range(from low values to high values
leading to magnetic saturation). In this manner, in the ab-
sence ofsj ,td consideration, we complement the results of
Stiles and Kagan[20] for full range of values of the magnetic
field. We also report the critical temperature values to start
the convection.

FIG. 1. Plots ofLsaLd (solid
line), x (line with *), x2 (line with
L) against aL, for a ferro-
fluid with Ms=31 800 A/m, Ta

=298 K.

FIG. 2. Variation of K/m with
aL for a ferrofluid with Ms

=31 800 A/m,Ta=298 K.
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II. BASIC EQUATIONS

The equations governing the flow of an incompressible
magnetic fluid, neglecting the spin diffusion terms are given
as [2,4,5]

¹ ·u = 0, s1d

r
Du

Dt
= − = P8 + sh + jd=2u + m0sM · = dH + 2js¹ 3 vd

− rgk , s2d

r0I
Dv

Dt
= 2js= 3 u − 2vd + m0M 3 H s3d

DM

Dt
= v 3 M −

1

tm
sM − M eqd, s4d

and

FrCV,H − m0H ·
] M

] T
GDT

Dt
+ m0TS ] M

] T
D

V,H
·

DH

Dt

= Kt=
2T + F. s5d

These are the equations of mass balance, linear momentum,
angular momentum, magnetization relaxation, and tempera-
ture equations, respectively. Hereu=su,y ,wd is the velocity,
D /Dt=] /]t+u ·=r the density,P8=P+ 1

2u0H
2, v is the av-

erage spin velocity of colloidal particles,h is the viscosity of
carrier fluid, j is the vortex(rotational) viscosity, H is the
magnetic field,M is the magnetization,M eq is equilibrium
magnetization,m0 is magnetic permeability(in free space
m0=4p310−7 H/m), rI is the average moment of inertia of
the colloidal particles per unit volume,tm is the Brownian
relaxation time,T is the temperature,CV,H is the specific heat
capacity at constant volume and magentic field,Kt is the
thermal conductivity, andF is the viscous dissipation. We
point out that temperature equation(5) can also be written in
an alternate form using specific heat capacity at constant
pressure. Maxwell’s equations in the magnetostatic limit are

= ·B = 0, = 3 H = 0, B = m0sM + Hd. s6d

On assuming Boussinesq approximation for the density
variation we have

rg = r0gf1 − asT − Tadg, s7d

wherea is the thermal expansion coefficient andTa is aver-
age temperature. Moreover, on neglecting the inertia of the
colloidal suspended particles, we can write(3) as

v =
m0

4j
M 3 H +

1

2
s= 3 ud. s8d

On substituting(7) and (8) into (2) and (4) we have

r
Du

Dt
= − ¹ P8 + h=2u + m0sM · = dH +

1

2
m0 = 3 sM 3 Hd

− r0gs1 − asT − Taddk , s9d

DM

Dt
=

1

2
s= 3 ud 3 M −

1

tm
sM − M eqd −

m0

4j
M 3 sM 3 Hd.

s10d

Equations(1), (5), (6), (9), and(10) are the basic equations
in our work.

At equilibrium, magnetization is aligned with stationary
magnetic field and is a function of the magnetic field and the
temperature. It is assumed to be described by Langevin for-
mula [4],

M eq=
H

H
MsLsaLd =

H

H
MeqLsH,Td, s11d

LsaLd = cothsaLd −
1

aL
, aL =

mH

kBT
,

wherem is the magnetic moment of a single particle,Ms is
the saturated magnetization,kB=1.38310−23 J/K−1 is Boltz-
mann’s constant, andaL is Langevin parameter.

We consider a horizontal layer of an incompressible mag-
netic fluid heated from below. A Cartesian coordinate system
sx,y,zd is used withz-axis normal to the layer which is con-
fined between horizontal platesz=−1

2d andz= 1
2d. A uniform

magnetic field is applied normal to the plates and a constant
temperature gradient is maintained between the plates. The
temperature boundary conditions, thus, are

T = T0 at z= 1
2d, T = T1 at z= − 1

2d, Ta = 1
2sT0 + T1d.

s12d

For velocity we employ no slip boundary conditions,u=0 on
the rigid plates. The magnetic boundary conditions are that
the tangential component of the magnetic field and normal
component of the magnetic induction are continuous across
the boundary.

To obtain the solution in the quiescent state we first lin-
earize magnetization equationMeq in the same manner as
Finlayson[8] did

Meq= Ma + xsH − Had − KmsT − Tad, s13d

where x=s]M /]HdHa,Ta
is tangent magnetic susceptibility

and Km=−s]M /]TdHa,Ta
is called pyromagnetic coefficient.

In our case,Hx!Hz,Hy!Hz, andHz<Ha, and simplifying
Eqs.(11) and (13), yields

Meq x = x2Hx,

Meq y = x2Hy,

Meq z = Ma + xsHz − Had − KmsT − Tad, s14d

whereMa=x2Ha. We note that the susceptibilityx (tangent)
andx2 (chord) andKm=xHa/Ta are, in general, functions of
temperature and magnetic field. Figures 1 and 2 display their
characteristics. The tangent and chord magnetization suscep-
tibility x, x2 can be estimated by the Langevin formula(11)
for a different Langevin parameteraL as [2]:
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aL =
mHa

kBTa
=5

!1, x =
Msm

3kBTa
, x2 = x,

.1, x =
Msm

kBTa
L8saLd, x2 =

Ms

Ha
LsaLd,

@1, x =
MskBTa

mHa
2 , x2 =

Ms

Ha
S1 −

1

aL
D .

s15d

The quiescent state solution of the basic equations(1), (5),
(6), (9), and (10) with corresponding rigid boundary condi-
tions is given to be

us = 0, vs = 0, Ts = Ta − bz, b =
T1 − T0

d
, s16d

Hs = kSHa −
xHabz

Tas1 + xdD, M s = kSMa +
xHabz

Tas1 + xdD,

Hs + Ms = Ha
ext, s17d

ps = − rgz−
m0bxHaMa

Tas1 + xd
z−

1

2
rgabz2 −

m0b2x2Ha
2

2Ta
2s1 + xd2z2.

s18d

To study the linear stability of the above solution we now
perturb the variables appearing in the above equations. On
denoting the perturbation variables by dashes, we write

fu,y,w,Mx,My,Mz,Hx,Hy,Hz,P,ugT

= f0,0,0,0,0,M3
s,0,0,H3

s,Ps,TsgT

+ fu8,y8,w8,Mx8,My8,Mz8,Hx8,Hy8,Hz8,P8,u8gT. s19d

On introducing the following dimensionless quantities:

x* =
x

d
, t* =

Ku

d2 t, u* =
u8

bd
, P* =

d2

hKu

P8,

u* =
d2

Ku

u8, M * =
M 8

Ma
, H* =

H

Ha
, s20d

whereKu=Kt /rCV,H and settingH8= =f, the relevant equa-
tions, after dropping the primes and asterisks take the form

1

Pr

] u

] t
= −

] p

] x
+ ¹2u −

x2M3Rg

2s1 + xd
Mx − c1

] Mx

] z
−

M3Rg

2s1 + xd
] f

] x

+ c2
]2f

] z] x
, s21d

1

Pr

] y

] t
= −

] p

] y
+ ¹2v −

x2M3Rg

2s1 + xd
My − c1

] My

] z
−

M3Rg

2s1 + xd
] f

] y

+ c2
]2f

] z] y
, s22d

1

Pr

] w

] t
= −

] p

] z
+ ¹2w −

x2M3Rg

s1 + xd
Mz − c1

] Mz

] z

+
s1 + x2dM3M5

2
¹2f + c2

]2f

] z2 + Rg u, s23d

] Mx

] t
= Hc3 −

1

t
JMx − S1

2
+

xM4z

2x2s1 + xdDS ] w

] x
−

] u

] z
D

+ Hc4 +
1

t
J ] f

] x
, s24d

] My

] t
= Hc3 −

1

t
JMy − S1

2
+

xM4z

2x2s1 + xdDS ] w

] y
−

] y

] z
D

+ Hc4 +
1

t
J ] f

] y
, s25d

] Mz

] t
= −

1

t
Mz +

x

x2t

] f

] z
−

xM4

x2s1 + xd
w −

xM4

x2t
u, s26d

¹2f + x2S ] Mx

] x
+

] My

] y
+

] Mz

] z
D = 0, s27d

] u

] t
+

s1 + xdM2

x
Sz−

1

M4
D ]2f

] t ] z

= ¹2u + sM2M4z+ 1 −M2dw, s28d

where

c1 =
x2M3 Rg

2s1 + xd
z−

x2M3 M5

2
,

c2 =
M3 Rg

2s1 + xd
z+

x2M3 M5

2
,

s29d

c3 = NF z2

4j1s1 + xd
−

s1 − x2dz
4j1xM4

−
s1 + xdx2

4j1x2M4
2G ,

c4 = NF z2

4j1x2s1 + xd
+

z

2j1xM4
+

s1 + xdx2

4j1x2M4
2G ,

and where the parameters Pr, Rg,M1, M2, M3, M4, x, j1, and
t are defined as

Pr =
hCV,H

Kt
, Rg =

r2gabCV,Hd4

hKt
, t =

Kt

rCV,Hd2tm,

j1 =
j

h
,

M1 =
m0bx2Ha

2

rgas1 + xdTa
2, M2 =

m0x2Ha
2

rCV,Hs1 + xdTa
,

M3 =
m0xHa

2

rgadTa
.

Three related parametersN, M4, andM5 are denoted by
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N = Rg M1, M4 =
s1 + xdM1

xM3
=

bd

Ta
, M5 =

M3Rg

s1 + xdM1

=
r2gaCV,HTad

3

xhKt
.

In the above, Pr is the Prandtl number, Rg is the viscous
Rayleigh number, andN is the magnetic Rayleigh number.
On taking curl curl of Eq.(21)–(23), the vertical component
of the resulting equation gives

1

Pr

] ¹2w

] t
= ¹4w + Rg ¹1

2u +
1

2
M3M5Sx2

] ¹2Mz

] z
+ x2¹1

2¹2f

+ ¹4fD −
1

2
M1M5Sx2z

] ¹2Mz

] z
+ 2x2¹

2Mz

+
]2¹2f

] z2 + 2
] ¹2f

] z
D , s30d

where¹1
2=fs]2/]x2d+s]2/]y2dg.

Taking divergence of magnetization equations(24)–(26),
it becomes

] ¹2f

] t
= −

1 + x2

t
¹1

2f −
1 + x

t

]2f

] z2 +
xM4

t

] f

] z
+ S xM4

2s1 + xd
z

+
x2

2
D¹2w +

xM4

s1 + xd
] w

] z
+ x2c3

] Mz

] z
+ c3¹

2f

− x2c4¹1
2f. s31d

Equations(26), (28), (30), and (31) are four required
equations for four variablesw, Mz, f, andu. The boundary
conditions on velocity and temperature for rigid and rigid
plates are

w =
] w

] z
= u = 0, z= ±

1

2
. s32d

The magnetic boundary conditions are that the normal com-
ponent of magnetic induction and tangential component of
magnetic field are continuous across the boundary,

] f

] x
=

] c

] x
,

] f

] y
=

] c

] y
, Mz +

] f

] z
=

] c

] z
, z= ±

1

2
,

s33d

where c is the magnetic potential outside of fluid, and it
satisfies

¹2c = 0, uzu ù
1
2 . s34d

In order to match the domain of Chebyshev
pseudospectral-QZ method, we reset the present domain
from f−1

2 , 1
2
g to [21,1] with coordinate transformation ofz to

2z in equations(26), (28), (30), and (31) and in the above
boundary conditions. We perform the standard normal mode
analysis and look for the solution of variablesw, Mz, f, u in
the form

3
w

Mz

f

u
4 =5

wszd
Mzszd
fszd
uszd

6 3 expfskxx + kyydi + stg. s35d

On substituting(35) into equations(26), (28), (30), and(31),
in the new domain, we obtain:

s
1

Pr
s4D2 − k2dwszd

= h16D4 − 8k2D2 + k4jwszd

+ H− 2x2M5sM1z− 2M3dD3− 4x2M1M5D
2

+
x2M5

2
sM1z− 2M3dk2D + x2M1M5k

2JMzszd

+ H− 4M5sM1z− 2M3dD4− 8M1M5D
3

+ M5sM1z− 2s2 + x2dM3dk2D2 + 2M1M5k
2D

+
s1 + x2d

2
M3M5k

4Jfszd − k2 Rg uszd, s36d

sMzszd = −
xM4

x2s1 + xd
wszd −

1

t
Mzszd + 2

x

x2t
Dfszd

−
xM4

x2t
uszd, s37d

ss4D2 − k2dfszd = H xM4

1 + x
zD2 + 2x2D

2 +
2xM4

1 + x
D

−
xM4k

2

4s1 + xd
z−

x2k
2

2
Jwszd + Hx2M1 Rg z2

8j1s1 + xd

+
x2sx2 − 1dM3Rg z

4j1s1 + xd
−

x2
2M3M5

2j1
JDMzszd

+ HS M1Rgz2

4j1s1 + xd
+

sx2 − 1dM3 Rg z

2j1s1 + xd

−
x2M3M5

j1
−

4s1 + xd
t

DD2 + s1 + x2d

3Sx2M3M5

4j1
+

1

t
Dk2

+
s1 + x2dM3Rgk2

8j1s1 + xd
zJfszd + 2

xM4

t
Duszd,

s38d

s
s1 + xdM2

x
Sz−

2

M4
DDfszd + suszd = Hs1 − M2d

+
1

2
M2M4zJwszd + h4D2 − k2juszd, s39d

where derivativeD=] /]z and wave numberk2=kx
2+ky

2. The
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boundary conditions for velocityw and temperatureu are

w =
] w

] z
= u = 0 atz= ± 1. s40d

Following Refs. [8,20], the boundary conditions for mag-
netic field are

Mz + 2
] f

] z
+ kf = 0 atz= 1, s41d

Mz + 2
] f

] z
− kf = 0 atz= − 1. s42d

III. CHEBYSHEV PSEUDOSPECTRAL METHOD AND
THE EIGENVALUE PROBLEM

We now solve Eqs.(36)–(39) with boundary conditions
(40)–(42) by pseudospectral(collocation) method[21]. We
remark that the main motivations for the use of spectral
methods in numerical calculations stems from the approxi-
mation properties of orthogonal polynomial expressions.
Moreover, the approximation errors in spectral methods de-
crease much faster than algebraical methods.

We expand the unknown functions in Chebyshev polyno-
mials Tnsxd=cossn arccosxd on f−1,1g as

fsxd = o
n=0

L

anTnsxd, s43d

where

an =
2

cnp
E

−1

1 fsxdTnsxd
Î1 − x2

dx. s44d

HereC0=2, ci =1 si ù1d.
We now replace integration in(44) with numerical dis-

crete integral on the collocation points,

an =
2

cnL
o
j=0

L
1

cj
fsxjdTnsxjd, s45d

wherexj are called collocation points inf−1,1g. The most
optimal choice, for most problems, of these collocation
points are Gauss-Lobatto collocation pointsxj =−coss jp /Ld,
j =0,1,2, . . . .Equation(43) can then be expressed as

fsxd = o
j=0

L

gjsxdfsxjd, s46d

where the interpolating polynomial is given by

gjsxd =
2

Lcj
o
n=0

L
1

cn
TnsxjdTnsxd. s47d

After introducing the Gauss-Lobatto integration, thecj in
(47) will be c0=cL=2, cj =1, for 1ø j øL. Equation(46) im-
plies that the derivative offsxd can be represented by deriva-
tives of the interpolating polynomialsgisxd given by (47).

The differentiation matrixD may be introduced as

Di,j = gj8sxid =
2

Lcj
o
k=0

L
1

ck
TksxjdTk8sxid. s48d

For the second, third, and fourth derivatives, there are rela-
tionships of the typeD2=DD2, Dn+1=DDn. The derivative
values on the Gauss-Lobatto collocation points can be ex-
pressed by their values on the same points,

Fsnd = DnF. s49d

Components of matrixD are dependent on the orderL of
Chebyshev polynomials. After discretization, equations of
the generalized eigenvalue problem usually have the form

sFB1,1 B1,2

0 0
GFX1

X2
G = F A1,1 A1,2

BC2,1 BC2,2
GFX1

X2
G . s50d

The equation BC2,1X1+BC2,2X2=0 represents boundary
conditions. Variable vectorX2 are the boundary points and
the outermost internal points for Chebyshev pseudospectral
method. If matrixBC2,2 is not singular, the variable vector
X2 can be condensed and Eq.(50) becomes

sfB1,1− B1,2BC2,2
−1BC2,1gX1 = fA1,1− A1,2BC2,2

−1BC2,1gX1.

s51d

We checked this algorithm and applied it to the treatment of
the Bénard problem as an example. We found excellent
matching with the results of previous authors. We used the
QZ algorithm, subroutineDGGEV in LAPACK, to solve the
general eigenvalue problem. We tried for orderN+1ù16,
and found that almost all leading eigenvalues in this case,
have identical values at least up to five digits.

On returning to the general eigenvalue equations
(36)–(39), we note that these can be discretized by Cheby-
shev pseudospectral method in the new domainf−1,1g and
written in the matrix form as

sBX = AX , s52d

whereA ,B are nonsymmetric complex matrices, given as

B = 3
1

Pr
s4D2 − k2I d 0 0 0

0 I 0 0

0 0 4D2 − k2I 0

0 0
s1 + xd

x
SZ −

2

M4
IDM2D I

4 ,

s53d
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A = 3
16 D4 − 8k2D2 + k4I A1,2 A1,3 − k2 Rg I

−
xM4

x2s1 + xd
I −

1

t
I

2x

x2t
D −

xM4

x2t
I

A3,1 A3,2 A3,3
2xM4

t
D

1

2
M2M4Z + s1 − M2dI 0 0 4 D2 − k2I

4 ,

s54d

and

A1,2= − 2x2M5sM1Z − 2M3dD3 − 4x2M1M5D
2

+
x2M5

2
sM1Z − 2M3dk2D + x2M1M5k

2I ,

A1,3= − 4M5sM1Z − 2M3dD4 − 8M1M5D
3 + M5fM1Z − 2s2

+ x2dM3gk2D2 + 2M1M5k
2D +

s1 + x2d
2

M3M5k
4I ,

A3,1=
xM4

1 + x
ZD2 + 2x2D

2 +
2xM4

1 + x
D −

xM4k
2

4s1 + xd
Z −

x2k
2

2
I ,

A3,2=
x2M1 Rg

8j1s1 + xd
Z2D +

x2sx2 − 1dM3 Rg

4j1s1 + xd
ZD −

x2
2M3M5

2j1
D,

A3,3=
M1 Rg

4j1s1 + xd
Z2D2 +

sx2 − 1dM3 Rg

2j1s1 + xd
ZD2 −

x2M3M5

j1
D2

−
4s1 + xd

t
D2 +

s1 + x2dM3 Rg k2

8j1s1 + xd
Z + s1 + x2d

3Sx2M3M5

4j1
+

1

t
Dk2I .

Herek2=kx
2+ky

2, matrixD is differentiation matrix introduced
in (48), I is an identity matrix, andZ is the diagonal coordi-
nate matrix, andZ i,i =−cossip /Nd, i =0, . . . ,N. The vector
X =fw ,M z,f ,ugT is variable inw,Mz,f ,u on the Gauss-
Lobatto collocation points. Boundary conditions in discrete
form are

w0 = wN = o
j=1

N−1

D0,jwj =o
j=1

N−1

DN,jwj =u0 = uN = 0,

s55d

Mz0 − kf0 + 2o
j=0

N

D0,jf j = MzN + kfN + 2o
j=0

N

DN,jf j = 0.

Equation(52) together with boundary conditions(55) may
by arranged in the form(50), which may be condensed in the
form of Eq. (51).

We now follow the procedure and algorithms, as de-
scribed in Ref.[22]. For a givenb, wave numberk andHa
with other physical parameters, we employ the QZ algorithm
subroutineDGGEV of LAPACK library, to solve the gener-
alized eigenvalue equations(52). We then follow the algo-
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rithm for the determining neutral stability curves. Using QZ
algorithm, we find leading eigenvalues=sR+ iv for corre-
sponding wave numberk. Adjustingb by secant method, we
get the temperature gradientb when the real partsR of the
leading eigenvalues=sR+ iv is zero. From the neutral stabil-
ity curves sb ,kd, the critical temperature gradientb with
critical wave numberkc can be defined as

bc = min
k

bsPr,Ha, . . . d. s56d

The minimization of Eq.(56) is carried out by means of the
golden section search routine. We point out that if the imagi-
nary partv of leading eigenvalues=sR+ iv happens to be
zero and at the same time, if its real partsR approaches zero,
the stability is stationary. Otherwise, the stability is oscilla-
tory.

IV. NUMERICAL RESULTS AND DISCUSSION

We investigate real ferrofluids in our calculations with
fixed magnetite particlessMd=4.463105 A/md and diam-
eterssd=10 nmd. Table I lists some physical properties of

ferrofluids which we have taken from Ref.[2]. On calculat-
ing the concentrationw=Ms/Md, we find they are all below
10% and thus could be considered as dilute ferrofluids.
Moreover the relation functions(11) and(15) are then appli-
cable for different parameters. In the following calculation
we have estimated vortex viscosityj by the formula j
= 3

2hw and Brownian relaxation timetm=3Vh /kBT. We have
also setM2=0 since its value is negligible.

Figure 1 shows the plots ofx, the tangent susceptibility,
x2, chord susceptibility, and the Langevin functionLsaLd
against the Langevin parameteraL. It is apparent thatx, x2,
andLsaLd cannot be treated as constants. Figure 2 shows the
variation of theKm, the pyromagnetic coefficient, againstaL.
Here, it is again difficult to assume it to be constant. We also
point out that we carried out calculations for the parameter
M3 in Finlayson[8], and found that, for real ferrofluids, it
varied between 1øM3ø1.5 for a wide range of value ofaL.
Finally we remark that we had considered all seven kinds of
ferrofluids in our calculations but, because of the similarity
in results in several cases, we have presented results for a
few selected ones.

FIG. 3. Plots of the critical
magnetic Rayleigh numberNc

(gravity free) of a waterbased fer-
rofluid againstaL, solid line rep-
resents sj ,td consideration and
dotted line represents without
sj ,td. The thickness of fluid layer,
in each case, isd=2 mm.

FIG. 4. Plot of critical wave
numberkc againstaL for the same
fluid and in similar cases as in Fig.
3.
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We begin our discussion with the situation when gravity is
absent that is when convection is driven by magnetic forces
only, as it turned out to be quite striking in comparison to the
previous results[8,20]. In the following we identify, for com-
parison purposes, bysj ,td the vortex viscosity and relax-
ation time combination, representing the theory of particle
rotation used in this paper.

Figure 3 shows the plot ofNC, the critical magnetic Ray-
leigh number againstaL for both cases, withsj ,td present
and sj ,td absent. We did not find much variation in values
for different thicknessesd and thus have presented results for
d=2 mm. For higher value ofaL, we find our results nearly
agreeing with those of Finlayson[8] and Stiles and Kagan
[20] as expected, but the results for the lower values ofaL
are new and interesting. In the case of particle rotation
theory, whensj ,td are taken into account, we find that the
instability sets in at lower values ofNC. As a matter of fact,
it is found to be most unstable at lowest values ofaL. As aL
increases so doesNC and, eventually aboveaL=20, it takes

on the value near 2570. On the other hand, in the absence of
sj ,td, we find a contrasting situation. Now at the lower val-
ues ofaL, the fluid is more stable; the instability setting in at
higher values ofNC. However, asaL increases,NC now de-
creases and eventually aroundaL=30 it again takes the value
near 2560. The exact values ofNC depend upon the nature of
the ferrofluid considered. We point out that in this case our
results complement the results of Ref.[20] for a complete
spectrum of values ofaL. We thus conclude that the consid-
eration ofsj ,td, in the present case is to accelerate the insta-
bility.

A somewhat parallel situation occurs when critical wave
numberkc is plotted againstaL. Figure 4 shows the plots of
both situations. We note that, in the presence ofsj ,td, the
wave number increases asaL increases and aroundaL=15 it
stabilizes to a value of 3.60. On the other hand, when the
effect ofsj ,td is absent, the value ofkC starts higher at 3.714
at aL=1 and drops to 3.610 aroundaL=20. The critical tem-
peratureDTc however not only varies with the variation of

FIG. 5. Variation of critical
temperatureDTc (gravity free) for
a waterbased ferrofluid with dif-
ferent thickness of the fluid layer
d, (a) d=1 mm, (b) d=2 mm, (c)
d=4 mm, (d) d=8 mm, trace(e)
d=16 mm without sj ,td
consideration.

FIG. 6. Critical Nc for differ-
ent base ferrofluids(gravity free),
with sj ,td, d=2 mm, (a) Ester I,
Water I, Hydrocarbon I;(b) Ester
II, Water II, and Hydrocarbon II;
(c) Ester III.
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TABLE II. Critical Rgc, Nc. . . With gravity for Ester I, with or withoutsj ,td.

With sj ,td Without sj ,td

dsmmd aL Rgc kc Nc DTc Rgc kc Nc DTc

1 0 1707.8 3.115 0.000 218.020 1707.8 3.116 0.000 218.020

1 676.1 3.146 1326.209 86.316 734.9 3.481 1566.785 93.819

2 553.5 3.232 1550.023 70.667 588.5 3.509 1751.698 75.123

4 711.2 3.314 1415.900 90.788 730.5 3.436 1493.905 93.255

5 822.6 3.322 1283.754 105.010 836.8 3.398 1328.735 106.830

7 1018.5 3.312 1034.796 130.020 1023.6 3.335 1045.300 130.680

10 1230.8 3.284 749.397 157.130 1224.5 3.271 741.716 156.320

15 1438.6 3.245 457.878 183.660 1419.1 3.209 445.526 181.160

20 1548.7 3.222 299.147 197.720 1521.3 3.175 288.651 194.220

1.5 0 1707.7 3.115 0.000 64.598 1707.8 3.116 0.000 64.598

1 1135.5 3.136 738.881 42.953 1201.9 3.313 827.809 45.462

2 987.9 3.196 975.136 37.367 1034.0 3.361 1068.329 39.113

4 1179.8 3.240 769.772 44.628 1196.3 3.289 791.448 45.251

5 1292.8 3.236 626.387 48.902 1298.5 3.252 631.915 49.116

7 1452.3 3.220 415.634 54.936 1442.3 3.203 409.916 54.558

10 1578.3 3.201 243.405 59.700 1555.1 3.166 236.313 58.823

15 1665.5 3.185 121.220 62.997 1632.7 3.140 116.495 61.758

20 1700.7 3.178 71.256 64.329 1663.9 3.130 68.205 62.939

2 0 1707.8 3.118 0.000 27.252 1707.8 3.116 0.000 27.252

1 1425.4 3.130 368.409 22.746 1470.5 3.210 392.094 23.466

2 1312.7 3.170 544.797 20.948 1348.7 3.250 575.126 21.524

4 1464.6 3.193 375.333 23.372 1466.4 3.199 376.278 23.402

5 1538.6 3.190 280.733 24.554 1529.3 3.177 277.339 24.404

7 1626.8 3.182 165.006 25.960 1604.3 3.151 160.478 25.602

10 1684.5 3.176 87.730 26.880 1653.3 3.134 84.510 26.384

15 1719.3 3.170 40.875 27.436 1682.6 3.125 39.147 26.850

20 1732.5 3.171 23.397 27.646 1693.4 3.121 22.353 27.022

4 0 1707.8 3.114 0.000 3.407 1707.8 3.116 0.000 3.407

1 1688.6 3.125 32.311 3.368 1688.4 3.124 32.304 3.368

2 1681.3 3.138 55.860 3.354 1673.6 3.129 55.348 3.338

4 1711.6 3.153 32.038 3.414 1687.9 3.123 31.157 3.367

5 1722.0 3.156 21.976 3.435 1694.1 3.121 21.271 3.379

7 1733.1 3.158 11.705 3.457 1700.5 3.119 11.269 3.392

10 1740.2 3.163 5.852 3.471 1704.2 3.118 5.612 3.399

15 1744.9 3.164 2.631 3.481 1706.1 3.117 2.516 3.403

20 1747.0 3.166 1.487 3.485 1706.8 3.117 1.419 3.405

8 0 1707.8 3.123 0.000 0.426 1707.8 3.116 0.000 0.426

1 1712.2 3.125 2.076 0.427 1706.5 3.117 2.063 0.426

2 1720.7 3.135 3.657 0.429 1705.5 3.118 3.592 0.425

4 1733.1 3.150 2.053 0.432 1706.5 3.117 1.990 0.426

5 1736.5 3.153 1.397 0.433 1706.9 3.117 1.350 0.426

7 1740.7 3.158 0.738 0.434 1707.3 3.117 0.710 0.426

10 1743.9 3.161 0.367 0.435 1707.5 3.116 0.352 0.426

15 1746.6 3.161 0.165 0.435 1707.7 3.116 0.158 0.426

20 1747.9 3.166 0.093 0.436 1707.7 3.116 0.089 0.426
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aL (it increases with the increase ofaL) but it also varies
with the thicknessd.

Figure 5 shows the variation ofDTc with aL for different
thicknesses of fluid layerd. As expected as the thicknessd
increases,DTc decreases, implying a lower value ofDT to
kick in the convection at higher values ofd. we did not find
the effect of consideration of or neglect ofsj ,td, in this case.

Figure 6 shows the effect of varyingsj ,td combinations.
This is accomplished by plotting the variation ofNC against
aL for different ferrofluids and thus for differentsj ,td com-
binations. We found results, for different base ferrofluids, to
be identical and, therefore, these are grouped together. It can
be seen that the ferrofluid with Ester I base is the most un-
stable amongst them because it has lowest vortex viscosityj.
We carried out calculation for the critical wave numberkc for
different ferrofluids. Similar to the behavior ofNC, we find
that asj increases so does the critical wave numberkc andkc
increases with increase ofaL.

For the discussion of convection when both gravitational
and magnetic fields are applid simultaneously, we give Table
II. This table displays both the cases whensj ,td is taken into
consideration and whensj ,td effect is absent. As can be seen
from the table, our first observation, in this case, is about the
importance of the thickness of the layer. In the absence of
gravitational effect, we recall that we did not find significant
effect of the variation of the thicknessesd. In the present
case, we note that critical Rayleigh number Rgc has a very
low value ataL=2 and it increase asaL increases. This pat-
tern continues as the thickness of the layer is increased. We
note that the magnetic effect dominates when the thicknesses
d is a small. Afterd=4 mm or so, the buoyancy force, how-
ever, takes over much of the magnetic force and the critical
Rg takes on higher values, even at smallaL. An exactly
opposite pattern is observed for the criticalNc. It takes on
maximum value whend=1 mm and whenaL is also small,
and then continues decreasing asaL increases. It also de-
creases asd increases.

Finlayson[8] has proposed a formula,

Rgc

Rg0c
+

Nc

N0c
= 1, s57d

in which Rg0c=1708 andN0c=2568.5, to indicate the tight
coupling of the convection mechanism between buoyancy
and magnetic forces. We recall that Nield[23] had earlier
proposed a similar formula to predict the tight coupling be-
tween buoyancy and surface tension forces. In the present
case we note that, in the absence ofsj ,td consideration, the
above formula holds within a couple of percent. In the pres-
ence ofsj ,td consideration, however, we find that the for-
mula did not quite apply particularly at lower values ofaL
and at small thicknessd.

A glance at the values of the wave number shows that
their values in both cases, withsj ,td or without sj ,td con-
sideration, are almost the same. With regard to the critical
temperature gradient to start the convection, we note that it
increases asaL increases and that there is very small differ-
ence whethersj ,td is considered or not. In comparison to the
gravity free situation we find thatDTc is much higher in
gravity free case as compared to the case with gravity. In
comparison to the viscous fluid case we note thatDTc is
always lower in the magnetic fluid case. We looked for, but
did not find, the oscillatory behaviors in all cases. Our final
Fig. 7 represents the effect of varyingj, the vortex viscosity
on Rgc. From this figure, we note that ferrofluid with Ester
III base is most unstable with reference to the Rg, as com-
pared to other ferrofluids.

We close this section with the following remarks. In this
paper, we have for the first time considered the effect of
theory of particle rotation and the vortex viscosity for the
onset of thermal convection in a thin layer. We found that the
effect of consideration ofsj ,td is most effective in the thin
layer and at lower values ofaL and that the results are sur-
prisingly different there. We have noted that the buoyancy

FIG. 7. Critical Rgc for differ-
ent ferrofluids, with gravity and
sj ,td, d=2 mm, (a) Ester I, (b)
Ester II, (c) Ester III, (d) Water I,
(e) Water II, (f) Hydrocarbon I,(g)
Hydrocarbon II.
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forces become dominant once the thickness is increased. We
have not only considered the effect of consideration oft and
j but have extended, in the absence ofsj ,td the results of
Finlayson[8] and Stiles and Kagan[20] to a complete range
of magnetic field. It would have been more advisable, in the
numerical calculation, to leavet andj as arbitrary variables,
but in view of the fact that the theory used is applicable to

dilute ferrofluids, our choices fort andj are justifiable and
satisfactory.
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