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A theoretical investigation of the convective instability problem in the thin horizontal layer of a magnetic
fluid heated from below is carried out. The effects of the relaxation tirmed the vortexrotationa) viscosity
& are considered and discussed. The Chebyshev pseudospectral method is employed to solve the eigenvalue
problems and numerical calculations are carried out for a number of magnetic fluids and in full range of the
magnetic field. A variety of results under gravity-free conditions are also presented and the critical temperature
gradient are determined for a variety of situations. It is shown that the consideratignmhfin the stability
analysis, is most effective in the thin layer of the fluid and at low values of Langevin parameter
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I. INTRODUCTION be confined between two magnetic pole pieces. Lalas and

Magnetic fluids or ferrofluids are colloidal suspensions ofC@Mi [10] analyzed the problem, studied in R¢8], by
fine magnetic mono domain nanoparticles in nonconductingner_gy stability method. anvegtlve instability analysis for a
liquids like hydrocarbon, ester, water, etc. These fluids ar&Ct@ting layer of a magnetic fluid between two free bound-
not found in nature but are artificially synthesized. The con-2/1€S and between rigid or ferromagnetic boundaries have
tinuum description of the magnetic fluids, termed as ferrohy.P€€n studied by Gupta and Guptd], and Venkatasubrama-
drodynamics, has been in existence since the work of Nedlian and Kaloni12], respectively. Qin and Kaloril.3] have
ringer and Rosensweigl]. This so-called quasistationary analyzed the buoyancy-surface tension effects, using linear
theory has been helpful to explain many physical phenomen nd nonhnea}r theory, in a magnetic fluid hgated from below.
and has a wide range of applicatiofs3]. The theory has ecently Shivakumarat al. [14] have considered the non-

however, limitations because it assumes that magnetization yniform basic temperature gradient on Rayleigh-Benard-
L S mag . l\ﬁarangoni convection. Some other aspects of the theromo-
always collinear to the applied field at every instant, that is

convection problems, in magnetic fluids, have also been

magnetization relaxation time is zero. Recent researchet§gied by Recktenwald and Licke5], Blennerhassetet

have show_n tha}t when magnetic fluids move in the presencgl 116], and Straughafl7].
of an applied field, or are subjected to unsteady magnetic |n two recent papers Shliomigl8] and Shliomis and
fields, the phenomena observed can only be explained by @morodin [19] have studied the convective instability of
finite magnetization relaxation timg2,4-7. There are, in  magnetized ferrofluids by treating the fluids as binary mix-
general, two mechanisms of magnetization relaxation. Théures. These authors consider the influence of concentration
first one is Néel mechanism in which the particle magnetiggradients due to magnetophoresis and Soret effects. As
momentm rotates inside the particle and the particle doesShliomis[18] points out this situation is possible only when
not rotate itself. In Brownian relaxation mechanism the vecthe temperature difference is allowed to increase very slowly
tor m is locked into the crystal axis of the particle and rotatesso that the mass diffusion develops and remains undisturbed
along with the patrticle rotation. Thus when the applied fieldbefore the convection starts due to temperature difference.
has a changing direction or magnitude, in the Néel mechaunlike the results of previous authof8-16, who found
nism, the relaxation of the magnetization does not initiate th@nly stationary instability to occur in all cases, Shliomis and
rotation of the particle and accordingly no momentum transSmorodin[19] predict oscillatory instability in a certain re-
fer, from the particle to the fluid, occurs. In Brownian gion of magnetic field and the fluid temperature. Equations
mechanism the magnetization relaxation, however, causassed in Refs.[18,19 are again those of quasistationary
the rotation of the particle itself and there is thus momentuntheory[1].
transfer to the carrier fluid in the form of a viscous friction. It  Stiles and Kagafi2Q] discuss the thermoconvective insta-
is believed that quasistationary thedfy is reasonably valid bility of a ferrofluid in a strong external magnetic field.
for colloidal suspensions of Néel particles. For BrownianThese authors consider the equations involving rotational or
particle, with finite magnetic relaxation time, one, however,vortex viscosity and the nonequilibrium magnetization equa-
needs to incorporate the intrinsic rotation of the particle intion, involving Brownian relaxation time~. Unfortunately,
the theory[2,4,5. because of the strong external field assumption, which soon
There have been a number of convective instability studfeads to magnetic saturation, and in the manner equations are
ies using the quasistationary thedfy. Finlayson[8] studied linearized and approximated, their equations determining the
the convective instability of a magnetic fluid for a fluid layer stability criteria turn out to be identical to those of Finlayson
heated from below in the presence of a uniform vertical mag{8] [compare Eqs(4.11) — (4.15 of Ref. [20] with Eq. (17)
netic field. He discussed both shear free and rigid horizontall8a,b,¢ of Ref. [8]]. In particular, these authors assume
boundaries using the linear stability method. Gotoh and Yatending to zero and also the average spin of the particle equal
mada[9] carried out the same study by assuming the fluid tato the fluid vorticity. Stiles and Kagaf20], however, con-
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sider the effect of the dependence of shear viscosity on cobbout the values of various basic parameters involved, we
loidal concentration and on temperature gradient, not studiedlave sketched them in Figs. 1 and 2. We use Chebyshev
in Ref. [8]. We remark that, in a proper dilute theory of a pseudospectral method to solve the eigenvalue problems. It
magnetic fluid accounting for internal rotation of the par-turns out that, apart from the Rayleigh numikay and mag-
ticles, the influence of the relaxation timeand the vortex netic Rayleigh numbeN, several other parameters involving
(rotationa) viscosity &, in the absence of colloidal particle 7 and ¢ dictate the stability pattern. We consider the ferro-
inertia which is usually very small, are tied together. Thusfluid layers varying from 1 mm to 8 mm and carry out cal-
the absence of one variable in a physical situation impliesgulations for three carrier fluids, hydrocarbon, ester and wa-
automatically, the absence of the other variable and vicger. Our results, thus, not only predict the effectzofind ¢
versa. consideration on the stability, but we also report the magnetic

In the present paper we consider the convective instabilitfield effect in its entire rangérom low values to high values
problem in the horizontal layer of a magnetic fluid with leading to magnetic saturatipnin this manner, in the ab-
Brownian relaxation mechanism. We employ appropriatesence of(¢,7) consideration, we complement the results of
equations which allow proper consideration of internal rota-Stiles and Kagaf20] for full range of values of the magnetic
tion and vortex viscosityf2,4,9, and present a reasonably field. We also report the critical temperature values to start
complete study of the problem. In order to gain some feelinghe convection.
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1. BASIC EQUATIONS DM 1 1 o
. . . = (VXU XM= —(M -Mg) - —M X (M X H).
The equations governing the flow of an incompressible Dt 2 Tm 4¢
magnetic fluid, neglecting the spin diffusion terms are given (10)
as[2,4,5
Equations(1), (5), (6), (9), and(10) are the basic equations
V.u=0, (1) in our work.
At equilibrium, magnetization is aligned with stationary
Du _ , ) magnetic field and is a function of the magnetic field and the
re (7+VU+uo(M - V)H +2¢(V X w) temperature. It is assumed to be described by Langevin for-
mula[4],
- pok, 2
H H
Do Meq= EMSL(aL)=ﬁMeJ-(H,T). (11)
p0|Ft:2§(V X U=2w)+ ugM X H ©)]
1 mH
L(e)=cotha) - —, a =,
DM 1 o kBT
— o XM-—(M-Mg), (4)
Dt m wherem is the magnetic moment of a single partich, is
and the saturated magnetizatidg,=1.38x 10722 J/K™! is Boltz-
mann’s constant, and, is Langevin parameter.
G H (IM DT | (M) DH We consider a horizontal layer of an incompressible mag-
PR Rt o 0\ T )y, D netic fluid heated from below. A Cartesian coordinate system
SK YT+, ®) (x,¥,2) is used withz-axis normal to the layer which is con-

fined between horizontal plates -3d andz=3d. A uniform
These are the equations of mass balance, linear momentumagnetic field is applied normal to the plates and a constant
angular momentum, magnetization relaxation, and temperdemperature gradient is maintained between the plates. The
ture equations, respectively. Hares (u,v,w) is the velocity, temperature boundary conditions, thus, are
D/Dt=4/dt+u-Vp the densityP’ =P+3uH?, w is the av- 2 . L
erage spin velocity of colloidal particles,is the viscosity of 1= 1o atz=3d, T=T; atz=-3d, T,=3(To+Ty.
carrier fluid, ¢ is the vortex(rotationa) viscosity, H is the (12
magnetic fieldM is the magnetizationM ¢ is equilibrium ) ) .
magnetization,u, is magnetic permeabilitfin free space For velocity we employ no slip boundary conditions;0 on
wo=4mXx 1077 H/m), pl is the average moment of inertia of the rigid plqtes. The magnetic boundary _corjdltlons are that
the colloidal particles per unit volume:, is the Brownian the tangential component of the magnetic field and normal
relaxation timeT is the temperatureS,, y, is the specific heat component of the magnetic induction are continuous across
capacity at constant volume and magentic fidg,is the the boundary. o , o
thermal conductivity, andb is the viscous dissipation. We 10 obtain the solution in the quiescent state we first lin-
point out that temperature equati) can also be written in  €arizeé magnetization equatidvle, in the same manner as
an alternate form using specific heat capacity at constarfiinlayson(8] did

pressure. Maxwell's equations in the magnetostatic limit are Meg= M+ x(H = Ha) — Kn(T=To), (13)

V:B=0, V XH=0, B=pu(M+H). ®  Wwhere X=(oM/dH)y_r_is tangent magnetic susceptibility
On assuming Boussinesq approximation for the densit@nd Kn=~(dM/dT)y_r_is called pyromagnetic coefficient.

variation we have In our caseH,<H,,H,<H,, andH,~H,, and simplifying
Egs.(11) and(13), yields
pg=pod[1l - a(T-Ty], (7
. . - . Meq x = xoH
wherea is the thermal expansion coefficient afiglis aver- eax = X2
age temperature. Moreover, on neglecting the inertia of the
colloidal suspended particles, we can wiig as Meqy = x2Hy,
1
w:'Z—gM X H+ (VX ). ® Meq,=Ma+ x(H,=Ho) = Ky(T-To), (14

whereM_ = y,H,. We note that the susceptibility (tangen}

On substituting7) and(8) into (2) and(4) we have and y» (chorg andK,,=xH,/T, are, in general, functions of

Du 1 temperature and magnetic field. Figures 1 and 2 display their
Por =" VP + VU +uo(M - V)H + EMOV X (M X H)  characteristics. The tangent and chord magnetization suscep-
tibility x, x, can be estimated by the Langevin form4)
= pod(1-a(T-Ty)k, (9) for a different Langevin parametey as[2]:
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.
M¢m 1ow ap x2M3Rg JaM,
<11 :_sl =X __:__+V2W_—M - -
XZgr, 27X Prot 9z (1+y) % "tz
mH, Msm Ms (1 + x2)M3M Fp
=—2-0 =1, y= L' (o), =2 (q), X2) V35 oo 79
w=\ T X= T (), X2 H. (e) + 5 V2 + ‘”Za Zz+Rg 6, (23
ot MMy 1)
\ yOXE mie XZ_Ha a ) aMx:{%_}} X_<}+ﬂ)<’9_""_@)
d¢
The quiescent state solution of the basic equatidns(5), M R0 et (24)

(6), (9), and(10) with corresponding rigid boundary condi-

tions is given to be
’ My gt - (2o ez (9w _iv)
T, - T, at )7 \2 2x0(1+x/\ay dz
W=0, @°=0, T=T,-pz p=—7—. (16 1{a¢
+ +—=r—, 25
{1#4 [ 3y (25
XHapz ) ( XHapz )
H5=k<H -—=———], MS=k{M,+-"—],
“TT,1+x) T T, 1+ x) oMy Ly X908 Ma | M o
at Jz 1+ '
Hs+Ms:ngt, (17) T X2T X2(1+x) X2T
IMy M, IM
Ve + ( X —Y o Z>=O, 27
oim - pgz KB HMa 1 poBPx°H; P\ Ty Tz =7
Tal+x) = 2 21 +x)2 ,
18) ﬁ+m(z_i)ﬂ
at X M,/ dtaz
To study the Iinear stability Qf th.e above solution we now = V260 + (M,Mz+ 1 -Myw, (29)
perturb the variables appearing in the above equations. On
denoting the perturbation variables by dashes, we write ~ Where
M3 R Mz M
[u,2,w, My My, M, Hy, Hy Ho, P, 07 ‘ﬁl:);z(li )gZ_X2 23 2,
X
=[0,0,0,0,0M3,0,0H3, P5,T5]"
U0, W M, MY, MY, HL HL HL P, 6T (19) g,= MaRY xoMs My
27 2(1+y) 2
On introducing the following dimensionless quantities: (29)
, _ z 1-x2z_(1+xx
% X % Kg % 9, % d $3_N 4 1+ _4 M - PR E
X== t=—2t §=— P =—0Ho~P, &(1+x) ExMy A& Mg
d d Bd 7Ky
2
d2 M’ H _ z z (1+X)X2
fp— i P — (/f —N|: + + ,
u Kau, M 7 " H,' (20 ’ 46 x(1+x)  26xMy  AEX°M;

_ S and where the parameters Pr, Ry, M5, M3, My, x, &, and
whereK ,=Kt/pCy,y and settingd’=V ¢, the relevant equa- - are defined as

tions, after dropping the primes and asterisks take the form

Pr= 7CyH Rg zngaBCV,Hd4 . K .
ldu_ 9P oo  XeMsRg - My M3Rg d¢ Ke Ky pCypd® ™
Prot  ax 21+y) * "taz  2(1+x) dx ¢

a2¢ 51: ™
+ , 21 K
Y2520% - ) )
_ moBYH; _ mox’Hi
1- 21 2= ’
1ov_ op._, xMRg, oM, MiRg 94 pga(l +x)Ty PCyH(L+x)Ty
Prat . ay | © 2@+y Y "oz 21+ ay _ moxH:
3 - 0
P pgadT,
ey Ll (22) y
azay Three related parametels M,, and Mg are denoted by
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1+y)M d MR
N=RgM;, |\/|4:(—X)1:B_, gz —3 9 w w(2)
Mg Ta (1+)M; M, | M@ .
X exd (kx+ky)i +at]. (35
_ P"9aCypTod® ¢ #(2)
- X’?Kt . ] 0(2)

In the above, Pr is the Prandtl number, Rg is the viscouOn substituting35)

Rayleigh number, antl is the magnetic Rayleigh number.
On taking curl curl of Eq(21)—(23), the vertical component
of the resulting equation gives

19Vw 1 VM
= =VAW+RgV20+ =M M( ——2 4 y,V2V?
Pr ot gVl SMaMs| xa=——— + x2V1 ¢
+V4¢>_1M M( 28V2M2+2 V2M
2 1Vls\ X2 9z X2 z +X2M5
(92v2¢ 0v2¢> 2
+ +2 , 30
Py 0z (30)

where Va=[(?/ x?) + (1 ay?)].
Taking divergence of magnetization equatiq@g)—26),
it becomes

into equationg26), (28), (30), and(31),

™ the new domain, we obtain:
1
S 4D2 _ k2
o5 r( YW(z)
={16D*- 8k’D? + kw(2)

+ {— 2x:Ms(M1z - 2M3)D3= 4y,M;MsD?
(M1z= 2Mg)k’D + x,M 1M5k2}Mz(Z)

+ {— 4Mg(M;z - 2M3)D*- 8M;MsD?

+ Ms(M;z— 2(2 + x,)M3)k?D? + 2M;M:k’D

1+
« ! ZXZ) M3M5k4} #(2) -k Rg (2), (36)
&V2¢__1+X2V2 ~ 1+X52_¢+XM45_¢+< XM, i
at r ! 9z T Jz 2(1+y)
M2 =-— Mo I+ 2X Dy
X2\ p2 xMy dw IM, 2 ‘ X2(1+x) T X2T
+7 I Vaw+ + X213 + Ve
2 1+y) oz 9z M
2 - —6(2), (37)
~ X2¥aVid. (31 X2T
Equations(26), (28), (30), and (31) are four required M M
equations for four variablew, M,, ¢, and 6. The boundary  ¢(4D? - k?)¢(2) = X 402+ 2x,D? + L‘D
conditions on velocity and temperature for rigid and rigid 1+x 1+x
plates are MK . Xz—kz}W(Z) ) {XZMl Rg 2
W 1 41+y 2 8&1(1+x)
w=—=60=0, z==%_. 32
Jz 2 (32 xo2(x2—~ DM3Rgz  x3MsMs
+ - DMZ(Z)
. . 45(1+x) 26,
The magnetic boundary conditions are that the normal com-
ponent of magnetic induction and tangential component of . ( M,RgZ* . X~ DM3Rgz
magnetic field are continuous across the boundary, 45(1+y) 25(1+y)
a6_ow 36 _ow \\ ab_dw 1 MM 402002 1y
ax ax’ ay ay ° dz 9z’ T2 & T
(33) " (M . })kz
451 T
where ¢ is the magnetic potential outside of fluid, and it 2
satisfies + MZ} H(2) + ZX—MADG(Z),
861(1+x) T
V2y=0, [7=3. (34) (38)
In order to match the domain of Chebyshev (1+ )M 5
pseudospectral-QZ method, we reset the present domain 0#<z_ —)D¢(z) +06(2) = {(1 -M,)
from[-3, %] to [—1,1] with coordinate transformation afto X My
2z in equations(26), (28), (30), and(31) and in the above 1
boundary conditions. We perform the standard normal mode *SMaM,z W(2) +{4D*- K} 6(2), (39

analysis and look for the solution of variablesM,, ¢, 6 in
the form

026313-5
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boundary conditions for velocitw and temperaturé are The differentiation matriX® may be introduced as
oW
W:EZHZO atz= +1. (40)
DI j = gj,(xi) = 2 Tk(XJ)Tk(XI) (48)
]k‘O Ck

Following Refs.[8,20], the boundary conditions for mag-
netic field are
p For the second, third, and fourth derivatives, there are rela-
M, + z—d’ +k¢=0 atz=1, (41) tionships of the typeD?=DD? D™'=DD". The derivative
Jz values on the Gauss-Lobatto collocation points can be ex-
pressed by their values on the same points,

¢

M,+2— -k¢p=0 atz=-1. 42
ARFEE (42 F =DF, (49)
Components of matribD are dependent on the orderof
Ill. CHEBYSHEV PSEUDOSPECTRAL METHOD AND Chebyshev polynomials. After discretization, equations of
THE EIGENVALUE PROBLEM the generalized eigenvalue problem usually have the form

We now solve Eqs(36)—<39) with boundary conditions
(40)«42) by pseudospectrdkollocation) method[21]. We Bi1 Bia || X1 Air Ao || Xy
remark that the main motivations for the use of spectral o = . (50
. . . . 0 0 XZ BC2 1 BCZ 2
methods in numerical calculations stems from the approxi- ’ '
mation properties of orthogonal polynomial expressions. _
Moreover, the approximation errors in spectral methods deThe equationBC, ;X;+BC,,X,=0 represents boundary

crease much faster than algebraical methods. conditions. Variable vectoK, are the boundary points and
We expand the unknown functions in Chebyshev polynothe outermost internal points for Chebyshev pseudospectral
mials T,(x)=cogn arccosx) on[-1,1] as method. If matrixBC, , is not singular, the variable vector
. X, can be condensed and E§0) becomes
f(0 = 2 aTa(%), (43) _ _
n=0 o[By1- Bl,chz,lzscz,ﬂxl =[A11- Al,ZBCZ,lZBCZ,]JXl-
where (51)
= —f f(M) (44) We checked this algorithm and applied it to the treatment of
Cam) 1 V1-% the Bénard problem as an example. We found excellent

matching with the results of previous authors. We used the

QZ algorithm, subroutineGGEV in LAPACK, to solve the

general eigenvalue problem. We tried for ordér 1=16,

and found that almost all leading eigenvalues in this case,

have identical values at least up to five digits.

a,= —E f(xJ)T (%), (45) On returning to the general eigenvalue equations
Li=o G (36)—(39), we note that these can be discretized by Cheby-

shev pseudospectral method in the new donjaih, 1] and

written in the matrix form as

HereCy=2,¢c=1(i=1).
We now replace integration it44) with numerical dis-
crete integral on the collocation points,

wherex; are called collocation points if-1,1]. The most
optimal choice, for most problems, of these collocation
points are Gauss-Lobatto collocation poirfs —cogjw/L),

j=0,1,2,... .Equation(43) can then be expressed as oBX =AX, (52
f(x)= >, g;(x¥)f(x), (46)  whereA,B are nonsymmetric complex matrices, given as

where the interpolating polynomial is given b 1

P g poly 9 y Fr(4D2—k2|) 0 0 0

900 =12 E Tn(xJ)Tn(X) (47) . 0 | 0 0

Fin=0 - 0 0 4D2-12 ol

After introducing the Gauss-Lobatto integration, tgein (1+y) 2
(47) will be cy=c_ =2, ¢j=1,for 1<j=<L. Equation(46) im- 0 0 —(Z - —I)MZD |
plies that the derivative df(x) can be represented by deriva- i X M, ]
tives of the interpolating polynomialg;(x) given by (47). (53
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g e LEeBEEEE 16D*-8k2D%+ K1 A, A;; -KRgl
c = A = A A A A A
SxEY 838835 8% oM 1 2 My,
5T =N M H M09
m = AN dAN® x2(1+x) T  X2T X2T
A= 2XM4 ’
.2 | bbbbbbb > 32 188
5i.c|3995d7 % 1
28 3|3eRNe 8 s SMMZ+(L1-M)l 0 0 4Dk
) (54
es |8SE85S 3K 59
2= © 0o Qo <o o and
23 $|ccococ oo o
- = A12= = 2x;Ms(M;Z = 2M3)D? - 4x,M;MsD?
88 |nugrRagsy + X2M5 (1 7 MLKED + oMM
Déi'%i %gﬁc{i%gﬁ 2(1 3) X2V Visk-T,
) c
) Ap 3=~ 4M5(M,Z ~ 2M5)D* - 8M;MsD® + Mg[M,Z — 2(2
:| 2528889888 - Lty
o 4 A . 4 . 3
Z §g£3 wQd®E gy + x2)M3]k?D? + 2M;Mgk?D + 5 M3Msk*,
g §5S5|938REES
o °co2
= M 2xM M 4k? k?
s _ A3’l:i(T42D2+ 2x,D% + 1X+ 4D—4)Eli ) —XZZ l,
S| ¢. Tlagzegys x x x
2 SO XEXI&E & 2
4 & =z | NN~ NN A _xeMiRg_,  xa(x2—1)M3 Rg X2M3Msg
I Sldd o8 6o s < 32= .. LD+ ZD - D,
G‘“ 8&(1+x) 4&(1+Yy) 26,
é —_— < < < < <t <t < <t
S| €% .|555%8%55% Ao MiRY o0, (o= DMsRg, , xoMsMs
= < 3,37
2158859888888 461+ x) 26,1+ ) &
o = >
41+ 1+ x,)M3 Rg k?
é _ (1+x) 2+( x2M3 Rg Z+(1+yx)
2l 2 Tlwaed T 8&,(1+x)
S| E2_C|2z22=2888 X(X2M3M5+1)k2|
. = N o o O o - T - .
gl 2g7E oo
o S
£ °c £ Herek?=k2+k2, matrix D is differentiation matrix introduced
. in (48), | i; an identity ma;rix, a;uz is the diagonal coordi-
w > 2990w~ o nate matrix, andZ;;=-cogiw/N), i=0,... N. The vector
E%' 2 &\g § § S38383 X=[w,M,, @, 0]" is variable inw,M,,#, 0 on the Gauss-
e 2 3 ©eoeooe Lobatto collocation points. Boundary conditions in discrete
= form are
N-1 N-1
2 @ 8888880 W:W:ZD-W-:ED-W-:@:@:O
gq%a(‘:{:‘g:‘jg 0 Nj:10,JJj:1N,JJON )
o < (55)
N N
£ _|g33g383s3 Mzo = ke + 22, Do, = MN + keby + 22, Dy = 0.
SE2Elg2g=Re S
R A R Equation(52) together with boundary condition®5) may
? by arranged in the fornb0), which may be condensed in the
_ = form of Eq.(52).
S s We now follow the procedure and algorithms, as de-
% g scribed in Ref[22]. For a givenB, wave numbek andH,
S8 - = f -z with other physical parameters, we employ the QZ algorithm
R subroutineDGGEV of LAPACK library, to solve the gener-
S>>0 0 n 8O : . .
TTwww=s= alized eigenvalue equatiori§2). We then follow the algo-
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FIG. 3. Plots of the critical
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rithm for the determining neutral stability curves. Using QZ ferrofluids which we have taken from RgR]. On calculat-
algorithm, we find leading eigenvalige=sz+iw for corre- ing the concentratiop=Mg¢/ My, we find they are all below
sponding wave numbét Adjusting 8 by secant method, we 10% and thus could be considered as dilute ferrofluids.
get the temperature gradiegtwhen the real parsz of the ~ Moreover the relation functiond1) and(15) are then appli-
leading eigenvalus=sg+iw is zero. From the neutral stabil- cable for diffe_rent parameters_. In t_he following calculation
ity curves (B,k), the critical temperature gradieft with ~ We have estimated vortex viscosiy by the formula ¢

. also setM,=0 since its value is negligible.
Be= mklnB(PnHav ). (56) Figure 1 shows the plots of, the tangent susceptibility,

X2, chord susceptibility, and the Langevin functidsc, )
The minimization of Eq(56) is carried out by means of the against the Langevin parametey. It is apparent thag, x»,
golden section search routine. We point out that if the imagiandL(«; ) cannot be treated as constants. Figure 2 shows the
nary parte of leading eigenvalus=sz+iw happens to be variation of theK,, the pyromagnetic coefficient, againsgt.
zero and at the same time, if its real psgtapproaches zero, Here, it is again difficult to assume it to be constant. We also
the stability is stationary. Otherwise, the stability is oscilla-point out that we carried out calculations for the parameter
tory. M, in Finlayson[8], and found that, for real ferrofluids, it
varied between £ M;=< 1.5 for a wide range of value af, .
IV. NUMERICAL RESULTS AND DISCUSSION Finally we remark that we had considered all seven kinds of
We investigate real ferrofluids in our calculations with ferrofluids in our calculations but, because of the similarity
fixed magnetite particle$My=4.46x 10° A/m) and diam- in results in several cases, we have presented results for a
eters(d=10 nm). Table | lists some physical properties of few selected ones.

3.8
<X
ke

3.4: FIG. 4. Plot of critical wave

. numberk; againsta, for the same
fluid and in similar cases as in Fig.

] 3.

3.2
0 10 20 30 40
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We begin our discussion with the situation when gravity ison the value near 2570. On the other hand, in the absence of
absent that is when convection is driven by magnetic force$é, 7), we find a contrasting situation. Now at the lower val-
only, as it turned out to be quite striking in comparison to theues ofq,, the fluid is more stable; the instability setting in at
previous result§8,20). In the following we identify, for com-  higher values ofN.. However, asy, increasesNz now de-
parison purposes, byé,7) the vortex viscosity and relax- creases and eventually around=30 it again takes the value
ation time combination, representing the theory of particlenear 2560. The exact values¢ depend upon the nature of
rotation used in this paper. the ferrofluid considered. We point out that in this case our

Figure 3 shows the plot dfl¢, the critical magnetic Ray- results complement the results of RE20] for a complete
leigh number against, for both cases, witié,7) present spectrum of values of . We thus conclude that the consid-
and (¢, 7) absent. We did not find much variation in values eration of(¢, 7), in the present case is to accelerate the insta-
for different thicknessed and thus have presented results for bility.
d=2 mm. For higher value of , we find our results nearly A somewhat parallel situation occurs when critical wave
agreeing with those of Finlaysdi8] and Stiles and Kagan numberk; is plotted againsty_ . Figure 4 shows the plots of
[20] as expected, but the results for the lower valuesyof both situations. We note that, in the presencef), the
are new and interesting. In the case of particle rotatiorwave number increases ag increases and aroung =15 it
theory, when(&, 7) are taken into account, we find that the stabilizes to a value of 3.60. On the other hand, when the
instability sets in at lower values ®f.. As a matter of fact, effect of (¢, 7) is absent, the value &t starts higher at 3.714
it is found to be most unstable at lowest valuesypfAs ¢y  ata =1 and drops to 3.610 aroung =20. The critical tem-
increases so dods¥: and, eventually above, =20, it takes peratureAT. however not only varies with the variation of

2700
] C
2600 -
a
2500 |
FIG. 6. Critical N for differ-
Ne . .
2400 ] ent base ferrofluidggravity free,
E with (¢,7), d=2 mm, (a) Ester I,
] Water |, Hydrocarbon I{b) Ester
1 Il, Water II, and Hydrocarbon II;
2300 - ' ' ’
(c) Ester lII.
2200 |
2100 1— — — — —
0 10 20 30 40

oL
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TABLE II. Critical Rg, Nc... With gravity for Ester I, with or withouté, 7).

With (&, 7) Without (¢, 7)

d(mm) aL Rg. ke Nc AT, Rg. ke N¢ AT,

1 0 1707.8  3.115 0.000 218.020 1707.8  3.116 0.000 218.020
1 676.1 3.146  1326.209 86.316 734.9 3.481 1566.785 93.819
2 553.5 3.232 1550.023 70.667 588.5 3.509 1751.698 75.123
4 711.2 3.314  1415.900 90.788 730.5 3.436 1493.905 93.255
5 822.6 3.322 1283.754  105.010 836.8 3.398 1328.735  106.830
7 10185  3.312 1034.796  130.020 1023.6 3.335 1045.300 130.680
10 1230.8 3.284 749.397 157.130 1224.5 3.271 741.716 156.320
15 1438.6 3.245 457.878 183.660 1419.1 3.209 445.526 181.160
20 1548.7 3.222 299.147 197.720 1521.3 3.175 288.651 194.220

15 0 1707.7 3.115 0.000 64.598 1707.8 3.116 0.000 64.598
1 1135.5 3.136 738.881 42.953 1201.9 3.313 827.809 45.462
2 987.9 3.196 975.136 37.367 1034.0 3.361 1068.329 39.113
4 1179.8 3.240 769.772 44.628 1196.3 3.289 791.448 45.251
5 1292.8 3.236 626.387 48.902 1298.5 3.252 631.915 49.116
7 1452.3 3.220 415.634 54.936 1442.3 3.203 409.916 54.558
10 1578.3 3.201 243.405 59.700 1555.1 3.166 236.313 58.823
15 1665.5 3.185 121.220 62.997 1632.7 3.140 116.495 61.758
20 1700.7  3.178 71.256 64.329 1663.9  3.130 68.205 62.939

2 0 1707.8 3.118 0.000 27.252 1707.8 3.116 0.000 27.252
1 1425.4 3.130 368.409 22.746 1470.5 3.210 392.094 23.466
2 1312.7 3.170 544,797 20.948 1348.7 3.250 575.126 21.524
4 1464.6 3.193 375.333 23.372 1466.4 3.199 376.278 23.402
5 1538.6  3.190 280.733 24.554 1529.3  3.177 277.339 24.404
7 1626.8  3.182 165.006 25.960 1604.3  3.151 160.478 25.602
10 16845 3.176 87.730 26.880 1653.3 3.134 84.510 26.384
15 1719.3 3.170 40.875 27.436 1682.6 3.125 39.147 26.850
20 17325 3.171 23.397 27.646 16934  3.121 22.353 27.022

4 0 1707.8 3.114 0.000 3.407 1707.8  3.116 0.000 3.407
1 1688.6  3.125 32.311 3.368 1688.4  3.124 32.304 3.368
2 1681.3  3.138 55.860 3.354 1673.6  3.129 55.348 3.338
4 1711.6  3.153 32.038 3.414 1687.9  3.123 31.157 3.367
5 1722.0 3.156 21.976 3.435 1694.1  3.121 21.271 3.379
7 1733.1 3.158 11.705 3.457 1700.5 3.119 11.269 3.392
10 1740.2 3.163 5.852 3.471 1704.2 3.118 5.612 3.399
15 1744.9 3.164 2.631 3.481 1706.1 3.117 2.516 3.403
20 1747.0 3.166 1.487 3.485 1706.8 3.117 1.419 3.405

8 0 1707.8 3.123 0.000 0.426 1707.8 3.116 0.000 0.426
1 1712.2 3.125 2.076 0.427 1706.5 3.117 2.063 0.426
2 1720.7 3.135 3.657 0.429 1705.5 3.118 3.592 0.425
4 1733.1 3.150 2.053 0.432 1706.5 3.117 1.990 0.426
5 1736.5 3.153 1.397 0.433 1706.9 3.117 1.350 0.426
7 1740.7 3.158 0.738 0.434 1707.3 3.117 0.710 0.426
10 1743.9 3.161 0.367 0.435 1707.5 3.116 0.352 0.426
15 1746.6 3.161 0.165 0.435 1707.7 3.116 0.158 0.426
20 17479  3.166 0.093 0.436 1707.7  3.116 0.089 0.426

026313-10



CONVECTIVE INSTABILITY OF MAGNETIC FLUIDS PHYSICAL REVIEW E70, 026313(2004

1800 |
1600
1400 |\
Rgc FIG. 7. Critical Rg for differ-
1200 - ent ferrofluids, with gravity and
(¢,7, d=2 mm, (a) Ester I, (b)
Ester 11, (c) Ester lll, (d) Water I,
1 e (e) Water 1, (f) Hydrocarbon 1(g)
1000 -
Hydrocarbon Il
c
800 -
600 ——————
) 10 20 30 40
oL
ay (it increases with the increase @f) but it also varies Finlayson[8] has proposed a formula,
with the thicknesgl.
Figure 5 shows the variation @fT_ with o, for different Rg + Ne =1 (57)
thicknesses of fluid layed. As expected as the thickneds Raope  Noc

increasesAT, decreases, implying a lower value AfT to

kick in the convection at higher values df we did not find  in which Rgy,,;=1708 andN,.=2568.5, to indicate the tight

the effect of consideration of or neglect(@f, ), in this case. coupling of the convection mechanism between buoyancy
Figure 6 shows the effect of varying@, ) combinations. and magnetic forces. We recall that Nigla3] had earlier

This is accomplished by plotting the variation g against ~ proposed a similar formula to predict the tight coupling be-

oy for different ferrofluids and thus for differeif¢, 7) com-  tween buoyancy and surface tension forces. In the present

binations. We found results, for different base ferrofluids, tocase we note that, in the absence&fr) consideration, the

be identical and, therefore, these are grouped together. It ca@bove formula holds within a couple of percent. In the pres-

be seen that the ferrofluid with Ester | base is the most unence of(¢,7) consideration, however, we find that the for-

stable amongst them because it has lowest vortex viscésity mula did not quite apply particularly at lower values @f

We carried out calculation for the critical wave numkgfor ~ and at small thicknesd.

different ferrofluids. Similar to the behavior d®f:, we find A glance at the values of the wave number shows that
that as¢ increases so does the critical wave numigeandk,  their values in both cases, witl§, ) or without (¢, 7) con-
increases with increase of . sideration, are almost the same. With regard to the critical

For the discussion of convection when both gravitationaltemperature gradient to start the convection, we note that it
and magnetic fields are applid simultaneously, we give Tabléncreases ag, increases and that there is very small differ-
[I. This table displays both the cases whenr) is taken into  ence whethe(¢, 7) is considered or not. In comparison to the
consideration and whe(, 7) effect is absent. As can be seen gravity free situation we find thaAT; is much higher in
from the table, our first observation, in this case, is about thgravity free case as compared to the case with gravity. In
importance of the thickness of the layer. In the absence ofomparison to the viscous fluid case we note that is
gravitational effect, we recall that we did not find significant always lower in the magnetic fluid case. We looked for, but
effect of the variation of the thicknessés In the present did not find, the oscillatory behaviors in all cases. Our final
case, we note that critical Rayleigh number,R@s a very Fig. 7 represents the effect of varyiggthe vortex viscosity
low value atay =2 and it increase as, increases. This pat- on Rg. From this figure, we note that ferrofluid with Ester
tern continues as the thickness of the layer is increased. W base is most unstable with reference to the Rg, as com-
note that the magnetic effect dominates when the thicknessgwred to other ferrofluids.

d is a small. Afterd=4 mm or so, the buoyancy force, how-  We close this section with the following remarks. In this
ever, takes over much of the magnetic force and the criticapaper, we have for the first time considered the effect of
Rg takes on higher values, even at small An exactly theory of particle rotation and the vortex viscosity for the
opposite pattern is observed for the critiddl. It takes on  onset of thermal convection in a thin layer. We found that the
maximum value whem=1 mm and wheny,_ is also small, effect of consideration of¢, ) is most effective in the thin
and then continues decreasing @s increases. It also de- layer and at lower values af, and that the results are sur-
creases ad increases. prisingly different there. We have noted that the buoyancy
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forces become dominant once the thickness is increased. V#lute ferrofluids, our choices for and £ are justifiable and
have not only considered the effect of consideratiom ahd  satisfactory.
£ but have extended, in the absence(éf7) the results of

Finlayson[8] and Stiles and Kagaf20] to a complete range

of magnetic field. It would have been more advisable, in the

numerical calculation, to leaveand¢ as arbitrary variables, The work reported in the paper was supported by Grant
but in view of the fact that the theory used is applicable toNo. A7728 of NSERC of Canada.
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